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Abstract

We present benchmark values for one-month SPX index option prices when the un-
derlying asset dynamics follow a GARCH model with empirical innovations. We t
these dynamics to ex-dividend option return data and nd very few jumps that exceed
a chosen volatility threshold. We apply the model-free stochastic dominance bounds
on option values consistent with a monotone pricing kernel in a frictionless world. We
nd that the observed option market data lies above the Stochastic Dominance upper
bound for several liquid option moneyness categories. We present dynamic policies
that exploit these overpriced options in a frictionless world and show with out-of-
sample tests that these policies produce signicant risk-adjusted prots. We also nd
that a monotone kernel does not pass through the observed option bid-ask spread in
a majority of the cross sections. We conclude that the options are mispriced for both
frictionless markets and in the presence of frictions and demonstrate in both cases the
mispricing by out-of-sample empirical tests.



1. Introduction

Several theoretical studies in the nancial literature have derived the risk-neutral dy-
namics for the valuation of index options in the frictionless world, based on the General
Autoregressive Conditional Heteroscedasticity or GARCH models of the ex-dividend
index returns. In these models the random factors in the current index daily return
enter under various formulations into the volatility of future index returns. The pi-
oneering such study is by Duan (1995), followed by Kallsen and Taqqu (1998), and
Heston and Nandi (HN, 2000). These studies used daily returns, normal innovations,
and various alternative volatility updating equations. There is no intraday trading
and risk neutralization was achieved under various assumptions, including particular
types of trader utility functions. An alternative approach was pioneered by Rosenberg
and Engle (RE, 2002), in which the innovations were empirically dened, and risk neu-
tralization took place by relying on the observed option market data and extracting
empirically dened pricing kernels.

On the other hand, the theoretical derivation of the risk-neutral dynamics is, to our
knowledge, not feasible when the GARCH models are mixed with independent Pois-
son jumps (JGARCH), or when the innovations are not normal. Christoersen et al
(2010) analyzed in detail a series of theoretical models based on no-arbitrage equi-
librium (NAE) that covered most conceivable discrete-time index return dynamics.
Their models examined separately risk neutralization through admissible pricing ker-
nels and the equilibrium setups through which the kernels were derived. For empirical
applications, however, the incompleteness that arises in the option market when there
are jumps or when the innovations are non-normal has been handled by assuming the
existence of an arbitrary pricing kernel, which is generally extracted from observed op-
tion price data. This is what was done in Duan, Ritchken and Sun ((2006), Hsieh and
Ritchken (2005), Christoersen, Heston and Jacobs (2006), Barone-Adesi, Engle and
Mancini (BEM, 2008), Christoersen, Jacobs and Orthanalai (2012, 2013), Christof-
fersen, Heston and Jacobs (2013), Orthanalai (2014), Linn, Shive and Shumway (2018),
Babaoglou et al (2018), and Barone-Adesi et al (2020). These empirical studies have
generated controversial results concerning the pricing kernel and the ability to repre-
sent the values of certain types of options. The controversies started with Jackwerth
(2000) and were summarized extensively in Cuesdeanu and Jackwerth (2018), and
Perrakis (2022).

In this paper we tackle a more fundamental question that concerns the possibility of
extracting the NAE from the observable option market data, as assumed in all the
above studies. This question arises from the fact that the frictionless NAE is not
observable, insofar as the option market data produce a pair of bid and ask prices, and
the NAE lies within these prices only under strong assumptions, discussed further on
in this section. We test these assumptions by applying the stochastic dominance (SD)
approach to index option pricing under GARCH dynamics with empirically dened
innovations. Our major contribution lies in the fact that the observed option market
prices are not used in deriving upper and lower bounds (UB and LB) on admissible
frictionless option values consistent with the index dynamics. We can thus check
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whether the NAE assumption about the existence of frictionless equilibrium option
values within the bid-ask spread is justied for the universe of traded options in our
sample.

In the SD approach there is partial equilibrium between the underlying and the option
markets that does not allow an individual investor holding the index and a riskless
asset to realize superior risk-adjusted returns by including zero-net-cost individual
options or option portfolios in her holdings. The only assumption necessary for such
a partial equilibrium in the option market is the existence of a class of traders holding
index futures or an index tracking fund, and the riskless asset. Such traders obviously
exist in the economy since the S&P 500 index has in most studies the interpretation of
the market portfolio and there are several exchange-traded funds (ETF) indexed on it.
Further, all traded options use designated market makers, who are employees rewarded
on the realized prots and so maximize their wealth at a target date after the option
maturities. An immediate corollary of such an assumption is that the kernel must
be monotone decreasing in the index return. As Barone Adesi et al (2020, p. 431)
point out, violations of monotonicity are inconsistent with the neoclassical denition
of investor risk-aversion and market equilibrium.

Because of its structure, SD allows without exception the risk neutralization of all
GARCH models that have appeared in the literature, without and with independent
rare events and with normal or empirically dened innovations. There are explicit and
model-free expressions transforming the index dynamics into risk-neutral distributions
without using option market data, which we adapt to the GARCH dynamics. These
transformations dene a unique option value under all GARCH models with normal
innovations without any additional assumptions about trader utility. When the in-
novations are empirically dened and/or when there are rare events the SD theory
derives bounds that contain the admissible option values, those that are consistent
with a monotone pricing kernel. While the simple GARCH risk-neutral distributions
were already derived under normal innovations in the above-cited references, their
derivations under SD are novel, and they lead directly to the bounds under empir-
ically dened innovations and/or jump GARCH or JGARCH. Since the SD bounds
use only the index dynamics for their derivation, they can be used to assess the ap-
propriateness of tting kernels to observed option market data and thus explain the
resulting controversies.

We present such a generalized application of SD and illustrate it with specic examples
of GARCH models with empirically dened innovations. We use a long time series of
observed SPX monthly data and apply as our base cases the RE and BEM GARCH
models with empirically derived innovations to extract the SD bounds. Volatility
updating takes place under the Glosten, Jagannathan and Runkle (GJR, 1993) model.
We compare these bounds to the observed bid-ask spreads in the option market and
check whether there is partial overlap which includes the bid-ask midpoint, widely
used as the correct equilibrium price in the above empirical studies. The tests are
carried out at the level of individual options.

As it turns out, we observe that there is systematic no overlap between the bid-ask
spread of the option market, and the SD bounds for several highly liquid options
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dened by their degree of moneyness in most of the observed cross sections. This
non-overlap occurs from above, implying that the market overprices the options under
frictionless trading conditions. The overpricing is extensive for the highly liquid zones
near the at-the-money (ATM) category for both calls and puts, as well as one out-of-
the money (OTM) category for calls. It is especially pronounced in all the OTM zones
for puts, including the liquid deep OTM (DOTM) category.

For cross sections in which such an overlap does not exist for signicant portions of
the support of the index distribution, there are two separate but related implications,
referring to trading without and with frictions. Individual traded options are overval-
ued (undervalued) in the frictionless market if their bid-ask spread lies entirely above
(below) the SD bound interval. In such a case we derive and apply frictionless trading
strategies at the level of the individual options to exploit these inconsistencies. Since
we do not observe any underpricing in our options data, the strategies are for over-
priced options, separately for calls and puts. These strategies are dynamic, in the sense
that the zero-net-cost portfolios are established at the option trade date and closed
at option maturity, but they are also optimally rebalanced along the path, depending
on the realized index return. Such rebalancing is costless since we are in a frictionless
world.

The protability of such strategies can then be tested with out-of-sample tests on
their realized payos, which should stochastically dominate the portfolios of the index
and riskless asset. These tests compare the realized returns of two generic investors
termed the index trader (IT), who holds the index plus riskless asset portfolio, and an
identical trader named the option trader (OT) who adds to the IT portfolio a zero-
net-cost option position. The null of the tests is of non-dominance, following Davidson
and Duclos (DD, 2013). In the particular case of the frictionless dynamic strategies
the DD tests reject the null for both OTM calls and puts, weakly for calls and strongly,
with major excess returns, for puts. By contrast, the rejection weakens or disappears
when the ATM zone overpricing is included in the short option portfolios.

An important advantage of the SD approach is the fact that it can also be applied to
markets in which there are costs in trading the index, as well as bid-ask spreads in
trading the options. With very few exceptions noted below, all empirical index option
studies have focused on the modelling of the frictionless NAE, which is supposed to
be located within the observed bid-ask spread. Nonetheless, the conditions for this for
an entire option cross section are that there should be perfect competition with free
entry and no market power, as shown in an early but rarely cited theoretical study
by Jouini and Kallal (1995) in a market with frictions for any type of traded asset.
While the observed no overlap of the option bid-ask spread and the SD bounds implies
overpricing in the frictionless market, it may also imply that there is no monotone
kernel that passes through the bid-ask spread in the corresponding cross section.

In such cases we may invoke recently derived theoretical results by Constantinides,
Jackwerth and Perrakis (2009), Post and Longarela (2021), and Beare (2011, 2023),
according to which there are SD opportunities in the form of suitably derived zero-
net-cost option portfolios in the market with frictions. These strategies are generally
buy-and-hold and are generated by a search algorithm based on linear programming
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(LP), introduced by Constantinides, Czerwonko and Perrakis (CCP, 2020). This latter
study found several mispriced option cross sections, particularly in short-term options.
The time series of their realized payos can be translated into added returns to the
index and subjected to the out-of-sample Davidson-Duclos (DD, 2013) tests, as it was
done in Constantinides et al (2011) CCP, and Post and Longarela (2021). Since the
types of mispricing observed in the frictionless world suggest strongly that the markets
for calls and puts are segmented and a monotone kernel does not pass through the
bid-ask spread, we describe the CCP algorithm and apply it to the observed option
market data.

The algorithm rst identies the mispriced cross sections in which no monotone kernel
passes through the bid-ask spreads of the options. We observe that this occurs for
the overwhelming majority of the cross sections in the 25-year period of our option
market data. The application of the algorithm then identies the set of portfolios that
maximize certain well-known criteria of the excess OT returns such as the Sharpe,
Sortino, and information ratios, and applies to them the DD test. The results reject
the non-dominance null for most of the criteria, thus conrming the mispricing of the
options in the world with frictions.

In the next section we present the main theoretical content of the paper, starting
with the specication of the GARCH model and the risk-neutral transformations of
the dynamics corresponding to the SD upper bound. We also dene the dynamic
strategies to exploit the violations of the corresponding bounds, separately for calls
and puts. Section 3 describes our index and option data and presents the GARCH
parameter estimates, as well as the corresponding SD upper bounds, which it compares
with the observed option data and notes the massive overpricing of the options in the
frictionless world. Section 4 applies the dynamics frictionless strategies and conrms
the mispricing of both calls and puts in several highly liquid moneyness zones. It also
applies the CCP algorithm to the mispriced cross sections. Section 5 concludes.

2. The General Model

Let St denote the value of the index at time t, σ2
t+1 the variance of the realized returns

at time t + 1, assumed known at t, rt the logarithm of the riskless return, and t+1

the random term. In all cases we assume that within each period [t, t + 1], generally
taken to be equal to one day, the return follows either empirically dened innovations,
or a simple lognormal diusion augmented with an independent jump process.

Empirical innovations

We consider empirically dened innovations, implying as in RE that t+1 has an em-
pirically dened distribution of mean 0 and variance 1, G(0, 1). The daily returns are
then given by the following general model, in which both the ex-dividend1 risk pre-
mium on the index and the volatility updating equation have assumed various forms

1 Hereafter we omit the dividends, which are taken as given in all empirical applications.
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in existing studies:

log St+1St = rt + b(σ2
t+1) + σt+1t+1, σ2

t = F (σ2
t−1),

σ2
t = F (σ2

t−1,σ
2
t−2,    ,σ

2
1)

t = 0, 1,    , T − 1 (21)

In our empirical applications this model will be specialized to the Glosten, Jagan-
nathan and Runkle (1993), or GJR GARCH case, the one used in RE and BEM,
eqs (13)-(14) and (3) respectively, in which the variance updating diers between pos-
itive and negative index return innovations. All undened symbols represent constant
parameters of the model. As in all the empirical GARCH option studies, we limit
ourselves to single lag cases as in the empirical version of the corresponding paper,
with the extension to multiple lags following similar paths.

b(σ2
t+1) = b, σt+1t+1 = ut+1 ⇒ ut+1σt+1 = t+1; (2.2)

F (σ2
t−1,σ

2
t−2,    ,σ

2
1) = + ( + θIt−1)u

2
t−1 + σ2

t−1, It−1 =


0 if ut−1 ≥ 0
1 if ut−1 < 0



Our main results can be shown to hold for all models that conform to the general
formulation (2.1) such as, for instance, the Duan (1995), Heston and Nandi (2000)
and Nelson (1991) models, as well as for all variants of the Duan model presented in
Christoersen and Jacobs (2004).

For risk neutralization, assume that the parameters (, b, , θ, ) in (2.2) have been
estimated as described in Appendix I, following the method introduced by Boller-
slev and Wooldridge (1992) as elaborated in Chapter 13 of Davidson and MacKinnon
(2004). Given our time series of ex-dividend index returns t = 0,    , T and the initial
variance σ2

1 , we lter out the daily observed innovations as follows:

log(StSt−1)− (rt + b) = ut, utσt = ̂t, t = −, 1,    , T (23)

These data points generate an empirical distribution of mutually independent inno-
vations that can be ordered into values ̂t = zt ∈ [zmin, zmax] with mean 0 and unit
variance denoted by the cumulative distribution (CDF) P (z), which is the key input
in deriving the risk-neutral Q-distribution.

For the risk neutralization of these dynamics, suppose that we have T daily returns
in one observation point of our sample of SPX option values. Let Sτ , τ ∈ [t, T − 1]
denote the ex-dividend index value in any given day, K the strike price, C(St,K, T )
and P (St,K, T ) the frictionless option values consistent with the index dynamics,
and Y (z) the monotone pricing kernel. These frictionless values are distinct from the
observed option market data at time t, consisting of the bid and ask prices (Cbt, Cat)
and (Pbt, Pat) for calls and puts respectively. The relationship between these observed
data and the theoretically correct frictionless values, which is a major component
of this paper, is to our knowledge novel, since most empirical option market studies
have used the option market data to value the frictionless options.
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Dene Zτ = exp(rτ + b+ στz). The equilibrium equations for every day till maturity
are as follows, with the expectations taken with respect to P (z):

Eτ [Y (z)] = 1, Eτ [Y (z)Zτ ] = Eτ [Y (z) exp(rτ + b+ στz)] = exp rτ  (24)

The SD theory for frictionless markets (Perrakis and Ryan (1984), Ritchken (1985),
Levy (1985), Perrakis (1986), Ritchken and Kuo (1988)) has shown that the maximum
option value that can be supported by the equilibrium (2.4) for any monotone kernel
is given by the expectation at day τ of the option payo with the following risk-neutral
return distribution, where we have dened:

Ẑτ = Eτ [Zτ ], Zτmin = exp(rτ + b+ στzmin) (25)

Q(z) =





P (z) with probability
exp(rτ )− Zτmin

Ẑτ − Zτmin

1zmin
with probability

Ẑτ − exp(rτ )

Ẑτ − Zτmin

(26)

An SD lower bound can also be derived, but it can be safely conjectured that it will
never be violated.2 As shown in Ghanbari et al (2021), in the case of jumps this lower
bound lies below the Merton (1976) option value that assumes a non-priced jump risk.

Equation (2.6) can generate numerically the SD upper bound given the empirical
distribution of the observed innovations, the GARCH and other return parameters,
and the riskless rate. It suces to apply Monte Carlo (MC) simulation of the paths
along the 21 days till option maturity and apply the transformation (2.6) to generate
the risk-neutral path probability for every path. The comparison of this derived upper
bound with the observed bid and ask prices of the corresponding option will enable
us to derive inferences about the intermediate market in which these observed prices
have been formed.

Exploiting mispriced options in the frictionless world

Suppose we observe at time t a call option in a cross section with maturity T , whose
bid price lies above the SD upper bound, or Cbt(St,K, T ) > C̄(St,K, T ). We derive
the strategy that exploits the overpricing for all cases of discretized index dynamics,
including the empirical GARCH innovations. The strategy consists in shorting one
call per unit index at the bid price and allocating tCbt and (1− t)Cbt in the riskless
bond and the index, respectively. At time t, the allocation t is chosen so that at
the lowest value of the return Ztmin ≡ Z1t that corresponds to the left tail of the
return distribution, the portfolio payo from t to t+ 1 as in (2.5) will be zero. These
zero-net-cost call option positions must be rebalanced at each intermediate time τ ∈
[t, T−1] and closed at maturity at the option payo (ST −K)+. Making the denitions

2 Both SD upper and lower bound distributions are shown in Perrakis (2019, p. 24), together

with two alternative proofs in pp. 24-26 and 30-35.
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Zτ = exp(rτ + b+ στzτ+1), Rτ = exp(rτ ), we have the following optimal allocation at
time t and the corresponding portfolio value ΠC

t (Zt+1):

t =
C̄(StZ1t,K, T )− Z1tCbt(St,K, T )

RtCbt(St,K, T )− Z1tCbt(St,K, T )
≡ ∗

t ,

ΠC
t (Zt+1) = ∗

tCbtRt + (1− ∗
t )CbtZt+1

(27)

Observe that by construction we have EQ
t [ΠC

t (Zt+1)] = ∗
tCbtRt+(1−∗

t )CbtE
Q
t (Zt+1)

= CbtRt. The rebalancing at any time τ ∈ (t+1, T − 1] is done on the same principle,
namely that the portfolio value ΠC

τ+1(Zτ ) must be 0 at the lowest value Zτ+1min =
Z1τ+1 and the expectation at τ must be equal to the product of the successive risk-
neutral allocations, namely that EQ

t [Π
C
τ−1(Zτ )] = Cbt

i=τ
i=t Ri. For this we set

τ =
C̄(Sτ , Z1τ+1,K, T )− Z1τ+1Π

C
τ−1(Zτ )

[Rτ − Z1τ+1]ΠC
τ−1(Zτ )

≡ ∗
τ ,

EQ
τ


ΠC

τ−1(Zτ )
∗
τRτ + (1− ∗

τ )Zτ+1]

= RτΠ

C
τ−1(Zτ )

(28)

It can be easily shown by induction that if Cbt > C̄(St,K, T ) then the rebalancing
strategy (2.6)-(2.8)yields for any t > T a frictionless SD opportunity in the sense that
its expected payo is positive if there are no trading frictions and the short position
is closed at option maturity. Note that at T − 1 the option payo (ST −K)+ replaces
the SD upper bound in (2.8), yielding

(ST−1Z1T −K)+ − Z1TΠ
C
T−2(ZT−1)

[RT−1 − Z1T ]ΠC
T−2ZT−1

≡ ∗
T−1

For the implementation of the ex-post tests the null hypothesis is the following relation,
which is then used in out-of-sample dominance tests:

ΠC
T−2(ZT−1)[

∗
T−1RT−1+(1−∗

T−1)Zτ ] = Cbt

i=T−1∏

i=t

[∗
i Ri+(1−∗

i )Zi+1] ≥ (ST−K)+

(29)
For an overpriced put option, at time t, we write a put option at its bid price Pbt,
short tSt − Pbt units of the index and invest tSt in the riskless asset. The portfolio
payo if the short position is closed in the frictionless market at t + 1 is tStRt −
[tSt −Pbt]Zt+1 −P (StZt+1,K, T ), whose lowest value is when the put is at its upper
bound at t+ 1, or P (STZt+1,K, T ) = P̄ (St+1,K, T ). This payo is clearly increasing
in the put bid price Pbt for every t. At the lowest value of the index return support
Zt+1 = Z1t+1, the payo should be nonnegative, implying that the optimal allocation
at time t is:

t ≥
P̄ (StZ1t+1,K, T )− PbtZ1t+1

St[Tt − Z1t+1]
≡ ∗

t  (210)
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Setting t at its optimal level at time t, the expected portfolio payo if the position is
closed at the upper bound at t+1 is ∗

t StRt−EQ[(∗
t St−Pbt)Zt+1− P̄ (StZt+1,K, T )].

This expectation should be zero at Pbt = P̄ (StZt+1,K, t), which is veried using (2.6).

If the position is not closed at t + 1, we have realized the short position ΠP
t (Zt+1) =

∗
t St(Rt − Zt+1) + PbtZt+1, of which the payo at t+ 2 is

∗
t St(RtRt+1 − St+1Zt+2) + PbtZt+1Zt+2

Suppose that we decide at t + 1 to close the position at t + 2 at the prevailing put
price P (St+1Zt+2,K, T ). Then the payo is at its lowest value when the put is at its
upper bound at t+ 2, or P (St+1Zt+2,K, T ) = P̄ (St+1,K, T ). If the index position is
not readjusted, then at t+ 2 we have

∗
t StRtRt+1 − ∗

t St+1Zt+2 + PbtZt+1Zt+2 − P̄ (St+1Zt+2,K, T )

This payo is clearly increasing in the put bid price Pbt for every t. For SD, at the
lowest value of the support of the index return Zt+2 = Z1t+2 the payo should be
nonnegative, implying that the optimal reallocation at time t + 1 would be to short
an additional amount ∆∗

t+1 = ∗
t+1 − ∗

t . By setting

ΠP
t+1(Zt+2 = ∗

t (StRtRt+1 − St+1Zt+2) + PbtZt+1Zt+2 +∆∗
t+1St+1(Rt+1 − Zt+2)

we must have a nonnegative result when Zt+2 = Z1t+2, namely ΠP
t+1(Z1t+2 =

P̄ (St+1Z1t+2,K, ). Solving, we get

∆∗
t+1 =

P̄ (St+1Z1t+2,K, T )− ∗
t (RtRt+1 − Zt+1Zt+2)− Z1t+2Zt+1Pbt

St+1[Rt+1 − Z1t+2]
(211)

If ∆∗
t+1 is the optimal level at time t+ 1 according to (2.11), the portfolio payo at

t+ 2 is

ΠP
t+1(Zt+2) ≡ ∗

t St[RtRt+1 − Zt+1Zt+2] +∆∗
t+1St+1(Rt+1 − Zt+2) + PbtZt+1Zt+2

if it is closed when P (St+1Zt+2,K, T ) = P̄ (St+1,K, T ), and its Q-expectation at t+1
should be 0 when

Zt+1Pbt ≡ Pbt+1 =
EQ[P̄ (St+1Zt+1,K, T )]

Rt+1
= P̄ (St+1,K, T ),

which is veried using (2.6).

In general, for any τ ∈ [t+ 1, T − 1], we dene

Pbτ+1 = Pbt

i=τ+1∏

i=t+1

Zτ , ∆∗
τ+1 = ∗

τ+1 − ∗
τ ,

solving ΠP
τ (Z1τ+1) = P̄ (SτZ1τ+1,K, T ) (212)

ΠP
τ (Zτ+1 = ∗

τSτ

 τ∏

i=t

Ri −
τ+1∏

i=t+1

Zi


+

τ∑

i=t

∆∗
i+1Si+1

 τ∏

j=i+1

Rj −
τ+1∏

j=i+2

Zj


+ Pbτ+1
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At T−1 the upper bound is equal to EQ[(K−ST−1ZT )
+] and (K−ST−1Z1T )

+ replaces
the upper bound at the lowest return value in evaluating ∆∗

T−1 and ΠP
T−1(ZT ).

For the implementation, we apply (2.10)-(2.12) at every step of the path. The cumu-
lative proceeds must at maturity satisfy the following on average:

∗
t St

T−1∏

i=t

Rt−
T∏

i=t+1

Zi


+

T−2∑

i=t

∆∗
i+1Si+1

[T−1∏

i=t

Ri−
T∏

i=t+1

Zi

]
+Pbt

T∏

i=t+1

Zi−(K−ST )
+ ≥ 0

(213)

It is easy to see that the expectation of these cumulative proceeds is positive for
Pbt > P̄ , since their Q-expectation is zero if the short put price is equal at t to the SD
upper bound.

Several variants of these strategies can also be applied to verify the protability in
frictionless markets of trading in options whose bid prices lie above the frictionless
upper bound. For instance, it is possible to incorporate statistical errors in the es-
timation of the SD upper bound, by ltering out option bid prices that exceed the
SD bound multiplied by a factor greater than one. Similarly, we may also close the
put position at the upper bound P̄ (Sτ ,K, T ), τ ∈ (t, T − 1], and carry the proceeds
to option expiration. Such strategies are obviously not feasible in the market with
frictions, since the ask price lies above the bid price. In our empirical applications,
we liquidate the portfolio and close the option positions at maturity by following the
rebalancing (2.10)-(2.12) and assuming trading is frictionless, or at the prevailing ask
price at any step along the path in the presence of frictions.3

Observe that if there exist many cross sections in which the observed bid prices lie
above the SD upper bound then there is no monotone kernel passing through the
bid-ask spread in those cross sections. In such cases the equilibrium models (2.4)
or (2.7) need to be drastically modied in order to recognize frictions in trading the
underlying. The pricing kernel becomes a bivariate function depending on the traders’
holdings of both the index and the riskless asset, since it is no longer costless to
transfer money from the index to the bond account or vice versa. To our knowledge,
the equilibrium determination of the bid and ask prices of the options under transaction
costs is available only theoretically in terms of the reservation prices of the traders in
Perrakis (2019, pp. 233-241), and only for CRRA investors. There is, however, an
important theoretical result as noted in the introduction, according to which there are
option portfolios yielding protable SD opportunities for all risk averse investors if a
monotone kernel does not pass through the bid-ask spreads of all the options in a cross
section. We present the LP that derives these portfolios in Appendix II and discuss
their results in the following sections.

3 Note, however, that frictions were not taken into account in establishing the option portfolios,

implying that the resulting prots under frictions, if any, are upper bounds in exploiting the

observed frictionless violations of the SD bounds.
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3. Data and Estimations for the GJR GARCH with Empirical Innovations

Estimating the GARCH parameters

Since the parameters vary to some extent depending on the data from which they were
extracted, we use as our base case separate estimations for the 1960-2000 and 2000-
2023 series, corresponding to 10096 and 5781 observations of ex dividend log returns of
the index respectively. Apart from taking into account the rst order serial correlation
in expressions (3.1)-(3.2) below, our estimation method corresponds to the one used
by RE. The extracted parameters corresponding to the two series are denoted by the
subscripts 1 and 2. Since there is some evidence of rst-order serial correlation in the
series of returns, the variable denoted by ut is in fact given by the residuals from the
regression of the log-returns on a constant and the lagged log-return, as follows:

log(St+1St) = c+ ρ log(StSt−1) + ut+1 (31)

The estimated parameters are

c1 = 000028283, ρ1 = 01051757, c2 = 0000185, ρ2 = −01042065 (32)

Next, we estimate a GARCH (1,1) model by Gaussian maximum likelihood (ML).
Since the ML estimation has been shown not to be robust to the presence of jumps,
we wish to lter out observations for which the residuals are too large in absolute value.
Then ML estimates can be obtained by re-estimating a GARCH (1,1) model on the
sample from which the jumps have been ltered out. We nd that if the criterion for
deciding that an observation contains a jump nds too many jumps, the second ML
estimation either fails to converge or converges to something that allows for negative
variances. It appears that, to avoid this, a residual must exceed a threshold of at least
4.5 in absolute value before the corresponding observation is ltered out.

The rst ML application yields a grand total of 10 days in the rst series, in which
there were residuals in excess of 4.5 times the standard deviation. Six of the residuals
were negative and four positive. The largest negative return, equal to -10.967 standard
deviations, occurred on October 13, 1989. As a proportion of the total, these days with
jumps were less than 0.001 of the 10096 observations and are omitted in the parameter
estimations. Qualitatively similar results also obtained for the second series, in which
the ML application identied 5 days with residuals exceeding 4.4 times the standard
deviation, again less than 0.001 of the total. All of them were negative and the largest
one occurred on January 4, 2000, equal to -9.462 standard deviations.

For the GJR-GARCH parameters, the estimates from the samples for which the jumps
had been ltered out are as follows.

b1 = −0000251,1 = 0367547× 10−6, 1 = 00547, θ1 = 003109; 1 = 09272

b2 = 093× 10−4,2 = 021461× 10−5, 2 = 013191, θ2 = 0009367, 2 = 08351
(33)

As we verify numerically, the ltering out of the jumps had an insignicant impact on
the average volatility of the returns, which remained approximately the same for the
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full and ltered samples. From (2.3) and (3.1) the risk premium, the excess return of
the ex-dividend index over the riskless rate, is under the assumption of stationarity
equal to

E

log(St+1St)


− rt = c(1− ρ) + b (34)

Substituting the parameter values from (3.2) and (3.3) and multiplying by 254 in order
to annualize it we get the values of 2.57% for the rst sample and 6.62% for the second
one. We defer the discussion of these estimates for the following section.

The SPX option data

Our sample consists of end-of-day standard SPX option market bid and ask prices
for the third Friday of the month from Optionmetrics, covering the period from
1996/01/04 to 2022/02/18, for a total of 312 cross sections. Table 1 shows the char-
acteristics of the sample, separately for call and put options as functions of the degree
of moneyness.

The results show a strong moneyness eect, as expected from earlier studies. Trading
for the SPX options is concentrated in the at-the-money (ATM) and out-of-the-money
(OTM) zones. The ATM are dened arbitrarily for both types of options as those for
which KSt ∈ [098, 102].

The OTM zones are KSt > 102 for calls and KSt < 098 for puts. We use the
volume of trade as an indicator of liquidity. As the table indicates, the volume for
puts at 34,803 traded contracts is much larger than the 18,215 traded call contracts.
Almost 49% of the call volume is in the ATM zone, as distinct from about 22.5%
for puts. The calls also have a non-negligible in-the-money (ITM) volume of trade of
5% in the 0.90-0.98 zone, while for the puts the corresponding proportion is 3% in
the 1-02-1-07 zones. The tables also show a strong dependence of the relative bid-ask
spread as a proportion of its midpoint on the degree of moneyness, with the spread
widening as the options get deeper OTM. Since most empirical studies uses the bid-ask
midpoint as a proxy for the true frictionless option value, it is not surprising that
there is signicant uncertainty in the derived results with respect to the tails of the
index return distribution.4

Table 1 also shows the width of the SD bounds as a function of the degree of moneyness
for both calls and puts. This width increases as the corresponding options become
more OTM, as shown in Perrakis (2019, p. 29), paralleling the increase in the bid-ask
spread.

The Monte Carlo (MC) estimation of the SD upper bounds

The procedure described here is applicable to all options, puts as well as calls, and
the same MC procedure can generate all the SD upper bounds in each cross section.
The estimations of the bounds by MC are applied separately for the periods 1960-
2000 and 2000-2022, using the parameters in (3.2) and the corresponding empirical

4 See, for instance, Ross (2015) and Anderson, Fusari and Todorov (2017).
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distributions. For every day till option maturity T these innovations will be drawn
independently from the same distribution ̂t = zt ∈ [zmin, zmax].

Assume that we are at the start of the month t, with a maturity T , and that we have
ltered out the starting variance σ2

t . From the corresponding empirical distribution we
draw randomly a set of innovations and arrange them in terms of order of appearance
as representing the innovations of the days z1,    , zT . Their P -probabilities p(zi),
i = 1,    , T , are found from the empirical distribution, generating a probability of the
path in the P -world equal to

T
1 p(zi).

Next, we transform this sequence of independent innovations into a path of ex-dividend
index returns Z1,    , ZT . At each step of the path, we compute Zi = exp(ri+b+σizi),
i = 1    , T . Unlike the sequence of innovations, the returns are not mutually indepen-
dent since the volatility σi depends on the innovation zi−1, but the path probability in

the P -world continues to be
T

1 p(zi). Since the length of the path from t to T is the
same under P and Q, the Q-probability of the path is found from the equilibrium (2.4)
and the transformations (2.5)-(2.6). The path of ex-dividend index returns Z1,    , ZT

remains the same, but the corresponding probabilities are now equal to

q(zi) =





p(zi) with probability
exp(ri)− Zimin

Ẑi − Zimin

1zmin
with probability

Ẑi − exp(ri)

Ẑi − Zimin

, i = 1,    , T  (35)

The corresponding probability of the path in the Q-world is
T

i q(zi). Multiplying
this probability by the option payo for a large number of randomly selected paths,
adding the results and discounting by the product

T
1 rt of daily riskless return values,

yields the option upper bound value.

4. Results: Option Market Data and the SD Upper Bounds

Consistency of the option data with the SD upper bound

Table 2 presents the results of the comparison of the observed option market data in
Table 1 with the SD upper bounds estimated by MC and based on the P -parameter
estimates (3.1)-(3.4). The results are presented separately for calls and puts. The table
focuses on the existence of an (unobservable) frictionless equilibrium price consistent
with the P -dynamics, represented by the SD upper bound at the level of each individual
option.

We focus separately on calls and puts and for each liquid moneyness zone. Recall that
the NAE-based studies assume that the frictionless equilibrium prices of all options in
a given cross section lie within the observed bid-ask spread, most often at the spread
midpoint. The power of the SD paradigm is that it allows us to test this fundamental
feature of NAE, and also to identify the moneyness zones where this feature does not
hold.
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For the call options, the table shows that the entire ATM zone, as well as the two liquid
ITM categories with 2% of the traded volume each, are fundamentally inconsistent with
NAE. For a large percentage of the cross sections the entire bid-ask spread lies entirely
above the SD bound, implying that these options are overvalued in the frictionless
world. Even for those cross sections where the SD upper bound lies within the spread,
the midpoint of the spread is within the SD bounds only for a small percentage, less
than 20% of the total. Overpricing is also observed, albeit less pronounced, in the
highly liquid OTM zones 1.02-1.04 and 1.04-1.07, that account for 20% and 17% of
the traded volume respectively. Even at the deep OTM zone of 1.04-1.07 where in a
majority of the cross sections the SD upper bound lies within the spread, the bid-ask
midpoint lies below the SD upper bound for only 18% of the cross sections, in spite
of the fact that both the SD bounds and the quoted spread widen. Since a monotone
kernel obviously cannot pass through the bid-ask spread for a majority of the cross
sections, we conclude that a NAE frictionless equilibrium cannot be extracted from
the option data.

The overpricing results are, if anything, even more pronounced for the put options.
The main dierence with the calls lies in the fact that the option data is much more
concentrated in the OTM and deep OTM zones, that account for about 72% of the
total traded volume, almost twice what is observed for the corresponding OTM zones
for the calls. This OTM concentration of put option trading largely accounts for the
much larger volume of trade in put rather than in call options, since the ATM and
ITM volumes are comparable in size. The inconsistency of the observed data with the
SD upper bound is observable across the entire OTM and ATM moneyness zones, for
which a majority of the cross sections show no overlap with the bid-ask spread of the
options. Only for the 3% of ITM trades is there such an overlap for a majority of the
cross sections, but even there the spread midpoint lies outside the SD bounds.

These results imply that the observed option market data are inconsistent with a
frictionless equilibrium value of the options that relies on the estimated dynamics
of the index. As noted in the introduction, such an inconsistency can be tested in
the frictionless world, by comparing the realized time series of returns of the IT and
OT portfolios. The appropriate strategies were described for individual options in
equations (2.7)-(2.13). We describe below their implementation.

The ex-post SD tests in the frictionless world

For expository purposes and because of the fact that the option market is obviously
partially segmented between puts and calls given the large discrepancy in volume,
the tests are carried out separately for call and put options, following (2.7)-(2.9) and
(2.10)-(2.13) respectively. Starting with the calls, let Cji

bt > C̄(St,K
i
j , T ), j = 1,    , Ni

denote one of the Ni overpriced call options in a given cross section of the subset
i = 1,    , I of the cross sections that have overpriced call options. We select the
OT portfolio by aggregating the total OT excess return over ranges of moneyness as
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follows, with the weights specic to the cross section:

{ Ni∑

j=1

wi
j


Cji

bt − C̄(St,K
i
j , T )

}
Si

t , w
i
j ≥ 0,

Ni∑

j=1

wi
j = 1 (41)

Once the optimal weights wi∗
j have been determined at time t they are kept constant till

maturity. At each time τ ∈ [t, T−1] we dene the optimal allocation i∗
jτ , j = 1,    , Ni,

as in (2.8). At T − 1 we verify the terminal condition (2.9)] for the entire portfolio of
short call options.

Ni∑

j=1

wi∗
j Cj

bt

T−1∏

k=t

[∗
kRk + (1− ∗

k)Zk+1]−
N∑

j=1

wi∗
j (Si

T −Ki
j)

+ ≥ 0 (42)

Dividing the right-hand side of (4.2) by the ex-dividend index value Si
t , we transform

the OT option payo into an excess return for the subset of cross sections i = 1,    , I
that have overpriced calls. This allows the comparison of the time series of IT and OT
returns that verify the SD, as described in the following subsection.

An identical procedure also holds for the put options. The optimal weights wi∗
j are

determined at time t from the following relation, replacing (4.1):

{ Ni∑

j=1

wi
j


P ji
bt − P̄ (St,K

i
j , T )

}
Si

t , w
i
j ≥ 0,

Ni∑

j=1

wi
j = 1 (43)

The key optimal parameters i∗
jτ , j = 1,    , Ni, are determined from (2.10)-(2.12),

while the cumulative proceeds at maturity are determined from the following applica-
tion of (2.13):

Ni∑

j=1

wi
j

[
i∗
jtS

i
t

T−1∏

i=t

Ri −
T∏

i=t+1

Zi


+

T−2∑

i=t

∆i∗
j,i+1S

i
t+1

T−2∏

i=t

Ri −
T∏

i=t+2

Zi



+ P j
bt

T∏

i=t+1

Zi − (Ki
j − Si

T )
+
]
≥ 0 (44)

As with the call, dividing the right-hand side of (4.4) by Si
t we get the excess return

of OT over IT for the given cross section. The time series of the returns of the cross
sections with overpriced puts is the input for the next phase of the empirical work.

Results: the ex-post Davidson-Duclos tests in the frictionless world

Tables 3 and 4 below show the results of the frictionless DD tests for calls and puts
respectively. These tests add the time series of the excess returns of the overpriced calls
and puts to the returns of the index and compare them to the returns of the index. For
the call options, in spite of the widespread overpricing in many cross sections in the
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liquid ATM and OTM zones the average realized excess returns are small and quite
volatile, as shown in the rst panel of Table 3. Only the OTM zones survive these
stringent tests with their non-dominance null, which are signicant only after 5% and
10% trimming in the right tail of the realized returns, in addition to the 10% trimming
in the left tail that is always applied.

By contrast, the results in Table 4 are clearcut and reject the non-dominance null in
all OTM zones unequivocally and for all aggregations. The inclusion of the two ATM
zones to the OTM weakens and eventually nullies the aggregate results. We conclude
that the OTM put option price data is fundamentally inconsistent with the existence
of a frictionless competitive equilibrium within the observed spreads. The dierence
between the call and put results is probably due to the much larger percentage of calls
than puts in the ATM zone of [0.98,1.02] accounting for 49% as compared to 25%.

The CCP algorithm for the market with frictions

In Appendix II we describe the search algorithm applied to each cross section in
which there is no monotone kernel passing through the bid-ask spread of the options.
We verify this condition by a linear program (LP), initially presented in Constan-
tinides, Jackwerth and Perrakis (CCP, 2009) and repeated in Perrakis (2019, pp.
179-180). We dene the kernel Y (ST ) as cum dividend till maturity and assume a
single trading period [t, T ]. Letting now  denote the dividend rate, we check whether
Y (ST ) passes through the bid-ask spread of both calls and puts. In CCP we con-
sidered an interval 06St ≤ ST < 115St, with the left tail obeying the restriction
min


min(ZT ), KSt, 06


; it can be easily seen that it includes virtually the entire

universe of liquid options. We then choose a strike price near ATM, or Kj ≈ St and
examine the feasibility of the following LP:

R−1
t


maxY Et


Y (ST )


ST (1 + )−Kj

+

minY Et


Y (ST )


ST (1 + )−Kj

+ subject to non-increasing Y (ST ) and

Rt(1 + k)−1 ≤ Et[Y (ST )] ≤ (1− k)−1, StRt(1− k) ≤ Et[Y (S)ST ] ≤ StRt(1 + k)

Cib ≤ Et

[
Y (ST )


ST (1 + )−Ki

+] ≤ Cia, (45)

Pib ≤ Et

[
Y (ST )


Ki − ST (1 + )

+] ≤ Pia

for i = 1,    , j − 1, j + 1,   N, i ̸= j

Those cross sections for which (4.5) is infeasible will be subjected to the search algo-
rithm described in Appendix II.

Once this maximum feasible value for Ŝ is found, we partition the segment [St, Ŝ]
and maximize the excess return to OT for each value of this partition to nd the
complete set Ω(Ŝ). Finally, the optimal portfolio is dened as the one for which a
given criterion selection reaches its supremum. We consider six such criteria, the
Sharpe ratio (SR), the Gain/Loss ratio (GLR), the Sortino ratio (SR), the maximum
feasible , the Information Ratio (IR) and the maximum expected excess return.
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Results: the ex-post Davidson-Duclos tests in the world with frictions

For this application we use a somewhat dierent tting of the GARCH dynamics
in a more restricted data that covers the entire periods 1960-2000, as well as from
January 6, 2000 to March 25, 2022, with 10098 and 5595 observations respectively.
In this slightly shorter total period, there are 302 option cross sections. There are
11 jumps, all negative, in the rst subperiod, and 6 negative jumps in the second
subperiod. The estimations are slightly more accurate but not signicantly dierent
from the previous larger data set. Instead of (3.3) we now have the following parameter
estimates:

b1 = −0000164, ρ1 = 014287,1 = 36728× 10−7,

1 = 004635, θ1 = 002475; 1 = 093664

b2 = 0000353, ρ2 = −005886,2 = 01961× 10−5,

2 = 004473, θ2 = 01271, 2 = 087218

(46)

With these two sets of parameters we apply the CCP search algorithm described in
Appendix II. Out of 302 dates there were 300 dates with violations of the kernel
criteria, the infeasibility of the system (4.5). The portfolios are scaled in terms of one
option per unit index and are derived in terms of the maximization of each one of the
above six criteria, all expressed in terms of excess returns for the OT portfolios, whose
signicance is assessed on the basis of the DD tests, shown in Table 5.

The columns of the table show the average excess return of the optimal portfolio as
per the corresponding criterion, the bootstrapped P value of the excess return, the
volatility of the excess return, the IR of the excess return, and the DD test P values
under the three conditions, no trimming at the right tail, 5% trimming and 10%
trimming. On average, the OT trades contained 0.74 puts and 0.26 calls, a proportion
that is almost the opposite of the one observed in the CCP Table 3 proportions. The
OT portfolios contained short index positions in only 9 cross sections.

We note that all criteria have excess OT returns close to each other, but their volatil-
ities vary considerably. Trimming does not seem to have much impact on the sig-
nicance of the results, unlike the CCP Table 2 results; this is probably due to the
dierent compositions of the OT option portfolios, since the right tail has little eect
on put option payos and the portfolios contain many more puts than calls in our data,
unlike CCP. In two cases the rejection of the non-dominance null is not signicant at
the 5% and 10% levels, while it is strongly signicant in three and signicant at better
than 9% for the IR criterion. We conclude that the option prices are at the very least
inconsistent with the competitive standard in the presence of frictions. We discuss
plausible economic interpretations of our results in the following section.

Last, we note that the CCP algorithm, when it yields signicant results in terms of
the DD tests for any criterion, will automatically conrm the option mispricing at the
frictionless level as well. Indeed, the derived OT portfolios contain a mixture of long
and short positions in call and put options, purchased (written) at the corresponding
ask (bid) prices. In the frictionless world these option positions would be established
at the bid-ask midpoints of the options. Hence, the OT trader will collect more money
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from the short positions and pay less money for the long ones. We carried this exercise
in the Table 5 results and observed that the gain shown in the second column of the
average excess return of OT for the various criteria varies from a low of 0.17 to a high
of 0.27, improving slightly the signicance of the DD test statistics.

5. Conclusions

In this paper we have presented an alternative modelling of the risk-neutral GARCH
dynamics for the GARCH models on the S&P 500 index returns with empirical innova-
tions pioneered by RE. Our fundamental contributions are twofold. First, we examine
separately option valuation in a frictionless world, which has been the focus of virtu-
ally the entire literature on empirical option research, from the observed option market
data that is far from frictionless. Second, we show that with the same dynamics the
observed market data is mispriced in the market with frictions as well, insofar as zero
net cost option portfolios generate SD of OT over IT as conrmed by powerful out of
sample tests.

For the frictionless world, using the SD theory for frictionless markets introduced by
studies published in the 1980s but not well known and never before applied empirically,
we derive admissible bounds for frictionless option prices for the RE and BEM GARCH
dynamics. These bounds are then compared to observed option market bid and ask
prices. We observe that a large proportion of these prices in the liquid moneyness zones
for both calls and puts lies entirely above the corresponding SD upper bounds for most
cross sections. We then develop dynamic strategies for exploiting these overpriced
options that involve shorting them at their bid prices and allocate the proceeds to
the index and the riskless asset for calls, and to the index for puts hedged by short
positions in the index, both suitably rebalanced along every node of the discretized
path to maturity. Applying these strategies separately for calls and puts at every
overpriced cross section, we show with the out-of-sample DD tests that OT dominates
IT over the entire sample of observed cross sections. We conclude that a frictionless
option market equilibrium consistent with the estimated index dynamics cannot be
extracted from the observed market data.

For the market with frictions, since there is obviously no monotone pricing kernel
passing through the option bid-ask spread of most cross sections, we apply a slightly
modied version of the CCP (2020) search algorithm based on LP that identies
protable zero net cost OT portfolios. After standardizing these portfolios to one
option per unit index, we select the portfolio that optimizes six dierent performance
standards. In all cases the OT excess return is positive, and the out of sample tests
reject the non-dominance null in four of the 6 cases, three of them strongly signicant.
Setting the bid-ask spread to 0 for these portfolios increases the expected payos,
although the improvement is modest due to the tightness of the spreads.

How does one interpret these results? First of all, we have presented strong proofs
of the incompatibility of the observed option market data with the index dynamics
in the frictionless world, with the data overpricing the options. This explains why in
RE the tted non-monotone kernel, which is inconsistent with economic theory, gives
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a better t to the data than the monotone one. Second, we have shown that there
are protable zero net cost portfolios in the real market, with the observed bid-ask
spreads. The obvious question that arises is why such portfolios exist and have not
been realized by new entrants.

This question requires further research that transcends the scope of this paper. One
possible explanation is that the portfolios cannot be executed, since there may not be
sucient depth in the standing quotes of the options in the zero-net-cost portfolios.
This will certainly put these portfolios out of reach for retail investors. In such a
case the option market equilibrium is not consistent with perfect competition, and a
model that relies on market power is certainly a possibility. This is also buttressed by
preliminary data on the market maker shares in these SPX monthly options that are
quite high, implying that a large percentage of the trades takes place at the actual
quoted prices. A formal modelling of the intermediate market equilibrium is certainly
a worthwhile project.

Appendix I

Estimation of (2.2)

We rewrite (2.2) for our GARCH(1,1) model as follows:

σ2
t = + ( + θIt−1)u

2
t−1 + σ2

t−1 or

σ2
t = (1− L)−1(+ ( + θIt−1)u

2
t−1)

(I1)

where L is the lag operator. (I.1) can be implemented if the innite series implied by
it can be truncated by specifying the value of σ2

1 then (I.1) becomes

σ2
t = t−1σ2

1 +
(1− t−1)

1− 
+ 

t−1∑

j=1

j−1u2
t−j + θ

t−1∑

j=1

j−1u2
t−jIt−1 (I2)

The model can be estimated by Gaussian Maximum Likelihood with the assumption
that the t are normally distributed. Bollerslev and Wooldridge (1992) give conditions
that allow this technique to provide consistent parameter estimates even when the
true innovation density is not normal. Further, with a long time series of the sort
we use here, making the simplication that t−1 = 0 has very little eect on the ML
estimates. Then (I.2) simplies to

σ2
t =



1− 
+ 

t−1∑

j=1

j−1u2
t−j + θ

t−1∑

j=1

j−1u2
t−jIt−j (I3)

The contribution from observation t to the loglikelihood is

ℓt = − 1−
2

(
log(2πσ2

t ) +
u2
t

σ2
t

)
,
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so that
∂ℓt
∂σ2

t

= −1

2

( 1

σ2
t

− u2
t

σ4
t

)
and

∂ℓt
∂ut

= − ut

σ2
t



Now
∂σ2

t

∂
= −

t−1∑

j=1

∂σ2
t

∂ut−j
= −2

t−1∑

j=1

j−1ut−j ,

and so
∂ℓt
∂

=
ut

σ2
t

+ 
( 1

σ2
t

− u2
t

σ4
t

) t−1∑

j=1

j−1ut−j  (I4)

The following relationships can be shown:

∂ℓt
∂
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∂ℓt
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∂
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∂θ
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t−jI(ut−j < 0),

∂ℓt
∂
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∂σ2
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∂
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2

(u2
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(j − 1)j−2u2
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(I5)

Setting the partial derivatives (I.4) and (I.5) equal to zero gives the likelihood equa-
tions, which are solved by the ML estimates of , , , , and θ.

Appendix II

The Constantinides, Czerwonko and Perrakis (2020) algorithm

The method is presented for a scale of trading of one option per unit of the index. The
actual scale of trading for a trader that wishes to apply the method will depend upon
the depths of the quotes of individual options that will determine the IT wealth for
comparison with OT. We consider two time periods, current time t and maturity T .
Let A(ST ) denote the payo at maturity of a suitably selected zero-net-cost portfolio
of call and put options. We want this portfolio to have a positive expected payo,
Et[A(ST )] > 0. Since these payos are in cash, for IT-OT comparison purposes we
transform them to index units by dividing them by 1 + k (1 − k) when they are
positive (negative), with k denoting the transaction cost rate. We limit the left tail of
the return at 06St and choose the option portfolio so that it has exactly one zero at
some value Ŝ, so that A(ST ) > 0 for 06St ≤ ST ≤ Ŝ and A(ST ) ≤ 0 for ST > Ŝ. Let
Ω(Ŝ) denote the set of such zero-net-cost portfolios with positive expected payos.
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We nd the set Ω(Ŝ) by solving the following linear program (LP). Let wi,
i = 1,    , 2N , denote the number of options Oi , both calls and puts, entering into the
OT portfolio from the N available options in a given cross-section ordered in ascending
strike price. We treat long and short option positions as separate options, allowing
us to restrict the total option position linearly. We also include a short position in
the index as an extra option, yielding 2N + 1 options in the OT portfolio. Then if
Π denotes the value of the option portfolio, we must have

Π =

2N+1∑

i=1

wiOi, 0 ≤ wi ≤ 1 (II1)

Let also gi(ST ) denote the payo of the ith option, the total payo at expiration is

equal to −ΠRt +
2N+1

i=1 wigi(ST ). We then have:

A(ST ) =





−ΠRt +

2N+1∑

i=1

wigi(ST )

1 + k
, ST ≤ Ŝ

−ΠRt +

2N+1∑

i=1

wigi(ST )

1− k
, ST > Ŝ

(II2)

A(ST ) is a piecewise linear function with constant slope ∂A∂ST in any interval
[Kj ,Kj+1] of two successive strike prices Kj , j = 1,    , N , of the available strike
prices in the option cross-section. We add the fundamental SD constraints:

A(ST ) > 0 for 06St ≤ ST ≤ Ŝ, A(ST ) ≤ 0 for ST > Ŝ, E[A(ST )] > 0 (II3)

These constraints need only be veried at the strike prices to the left of Ŝ, while at
the right, we simplify the search by adding the constraint that the payo should be
nonincreasing. Finally, we nd the OT portfolio by solving the following LP:

max
wi

{Et[A(ST )]} given Ŝ, subject to (II.1)-(II.3).

If this program is feasible, then the set of optimal weights and corresponding options
{w∗

i ̸= 0, O∗
i } belongs to the ex-ante stochastically dominant set Ω(Ŝ) of OT portfolios.

In the search we vary Ŝ until the LP becomes infeasible for some maximum value of
ST = Ŝ, arbitrarily restricted to 115St.
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Table 5

Criterion mean P value std IR no trim 5% trim 10% trim

SHR 4.33 0 4.90 0.88 0.2661 0.2661 0.2661

GL 4.14 0.001 6.85 0.61 0 0 0

SOR 4.02 0.002 6.85 0.59 0 0 0

max zh 4.33 0 4.90 0.88 0.2651 0.2651 0.2651

IR 4.05 0.001 6.51 0.62 0.0853 0.0847 0.0798

max E[r] 4.46 0.001 6.98 0.64 0.0001 0.0001 0.0001
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